
288 CHINESE OPTICS LETTERS / Vol. 6, No. 4 / April 10, 2008

Normalized intensity correlation function of single-mode
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Considering a single-mode laser system with cross-correlated additive colored noise and multiplicative
colored noise, we study the effects of correlation among noises on the normalized intensity correlation
function C(s). C(s) is derived by means of the projection operator method. The effects of the self-
correlation time τ1 of the additive colored noise, τ2 of the multiplicative colored noise, and the effect of
the cross-correlation time τ0 between the two noises on C(s) are discussed by numerical calculation. For
the case of positive correlation (λ > 0), it is found that when a0 > 0 the normalized intensity correlation
function C(s) increases with the increase of τ0 or τ2, and with value of τ0 or τ2 becoming larger, C(s)
comes to saturation. With increasing the self-correlation time τ1 of the additive noise, a minimum and a
maximum will appear on curve of C(s) as a0 > 0. If a0 < 0, C(s) decreases with the increase of τ0, τ1,
and τ2.

OCIS codes: 140.3570, 140.0140, 140.3430.

Recently, the statistical properties of intensity
fluctuation in a single-mode laser have attracted much
attention[1,2]. In most of the existing theoretical studies,
the additive noise (quantum noise) and the multiplica-
tive noise (pump noise) are both modeled as Gaussian
white noises, and these two noises are treated as without
correlation. In 1991, Fulinski et al. proposed that the
additive noise and the multiplicative noise are correlated
under certain conditions[3]. Since then, many researchers
considered the cross-correlation between the two noises
when studying the statistical fluctuation properties, and
the results were in better agreement with the experi-
mental results[4−10]. In 2002, Liang et al. studied the
stationary intensity distribution of the single-mode laser
cubic model with correlated pump noise and quantum
noise which were colored cross-correlation[11].

It is known that the normalized intensity correlation
function is an important physical quantity to characterize
the dynamic behavior of stochastic systems[12,13]. In this
letter, the case of a full account of the saturation effects
with cross-correlations between an additive colored noise
and a multiplicative colored noise on the normalized in-
tensity correlation function are investigated.

A fuller account of the saturation proprieties of laser
may be obtained from the Langevin equation as[14]

dE

dt
= −KE +

F1E

1 + A |E|2 /F1

+ p̃(t)E + q̃(t), (1)

by setting the electric field E = reiϕ, Eq. (1) can be
transformed into two coupling Langevin equations about
the field-amplitude r and phase ϕ. Decoupling them and
setting the laser intensity I = r2, we get the Langevin
equation about I,

dI

dt
= −2KI +

2F1I

1 + AI/F1
+ 2D + 2I1/2q(t) + 2Ip(t),

(2)

where K is the cavity decay rate for the electric field,

F1 = a0 + K is the gain parameter, a0 and A are real
and represent net gain and self-saturation coefficients, re-
spectively, q(t) is the additive noise and p(t) is the multi-
plicative noise. q(t) and p(t) are considered as Gaussian-
type noises

〈q(t)〉 = 〈p(t)〉 = 0, (3)

〈q(t)q(t′)〉 =
D

τ1
exp(|t − t′|/τ1), (4)

〈p(t)p(t′)〉 =
Q

τ2
exp(|t − t′|/τ2), (5)

〈q(t)p(t′)〉 = 〈p(t)q(t′)〉 =
λ
√

DQ

τ0
exp(|t − t′|/τ0), (6)

where D is the additive noise strength, Q is the mul-
tiplicative noise strength, λ is the correlation intensity
between q(t) and p(t).

The corresponding Fokker-Planck equation for the
probability function P (I, t) of the laser intensity I is
given by[13]

∂P (I, t)

∂t
= LFPP (I, t), (7)

LFP = − ∂

∂I
f(I) +

∂2

∂I2
G(I), (8)

in which

f(I) = −2KI +
2F1I

1 + AI/F1
+ 2D + 2B1

+6B0I
1/2 + 4IB2, (9)

G(I) = 4IB1 + 8B0I
3/2 + 4I2B2, (10)
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and

B0 =
λ
√

DQ

1 + 2Kτ0(1 − K/F1)
, (11)

B1 =
D

1 + 2Kτ1(1 − K/F1)
, (12)

B2 =
Q

1 + 2Kτ2(1 − K/F1)
. (13)

Equation (7) should meet 1 + 2Kτ0(1 − K/F1) > 0,
1 + 2Kτ1(1 − K/F1) > 0, and 1 + 2Kτ2(1 − K/F1) > 0.
When a0 is above the threshold (a0 > 0), there is not any

limit on τ0, τ1 and τ2. When a0 < 0, τ0, τ1 and τ2 have
to meet 0 < τ0, τ1, τ2 < −(K + a0)/2Ka0. The steady-
state probability density function Pst(I) can be obtained
by Eq. (7),

Pst = N0(B2I + 2B0I
1/2 + B1)

α1(
AI

F1
+ 1)

F1α2
2A I

D−B1
2B1

× exp(α3arctg(
B2

√
I + B0

√

|B1B2 − B2
0 |

) + α4

√

F1

A
arctg(

√

AI

F1
),

(14)

where N0 is the normalization constant and

α1 =
(α4B1 + α6A/F1)B2F1B1 − 2B0B2A(D − B1) − 2A(K + 2B2)B0B1

4AB0B1B2
, (15)

α2 = − (B1F1 − B1A)AF1

F 2
1 B2

2 − 2AF1B1B2 + A2B2
1 + 4AF1B2

0

, (16)

α3 =
−B0B2 + B2

1B2α4 − B0B1α5 − B0B1B2 + B0B1K

B0B1

√

|B1B2 − B2
0 |

, (17)

α4 =
2AF 2

1 B0

F 2
1 B2

2 − 2AF1B1B2 + A2B2
1 + 4AF1B2

0

, (18)

α5 =
(α4B1 + N1A/F1)B2F1

2B0A
. (19)

The normalized intensity correlation function C(s) is
defined as[12]

C(s) =
〈δI(t + s)δI(t)〉st

〈(δI)2〉st
. (20)

In terms of the adjoint operator L+
FP of the operator

given by Eq. (8), δI(t+s) can be expressed as δI(t+s) =
exp(L+

FPs)δI(t). Thus, we can rewrite Eq. (20) and get
the associated Laplace transform

C̃(ω) =

∫ ∞

0

exp(−ωs)C(s)ds

=
1

〈(δI)2〉st

〈

δI
1

ω − L+
FP

δI

〉

st

. (21)

Using the projection operator method used by Fujisaka
and Grossmann[15] to deal with the Laplace resolvent
ω − L+

FP in Eq. (21), we have[15,16]

C̃(ω) =
1

ω + µ0 + η1

ω+µ1+
η2

ω+µ2+···

, (22)

in which

µi = −
〈

δIiL
+
FPδIi

〉

st

〈(δIi)2〉st
, (23)

ηi = −
〈

(δIi)
2
〉

st

〈(δIi−1)2〉st
, (24)

δIi+1 = Si+1L
+
FPδIi, (25)

with starting δI0 = δI and S0 = 1, the operator Si is
determined by

Ki−1 = Si−1 − Si =
δIi−1

〈(δIi−1)2〉st
〈δIi−1| , (26)

where the operator 〈δIi| acting on ϕ(I) means the scalar
product

〈δIi|ϕ(I) = 〈(δIiϕ(I))〉st =

∫ ∞

0

Pst(I)δIiϕ(I)dI. (27)

The projection operator Ki projects ϕ(I) onto the sub-
space associated with the variable δIi. The projector
Si projects onto the space orthogonal to the space con-
taining δIi. Setting η2 = 0, the approximation of the
intensity correlation function is

C̃(ω) =
ω + µ1

(ω + µ0)(ω + µ1) + η1
, (28)

µ0 =
〈G(I)〉st
〈(δI)2〉st

, (29)

η1 =
〈G(I)f ′(I)〉st

〈(δI)2〉st
+ µ2

0, (30)

µ1 = −

〈

G(I) [f ′(I)]
2
〉

st

η1 〈(δI)2〉st
+

µ3
0

η1
− 2µ0. (31)

Performing the Laplace converse transformation of
Eq. (28), we get

C(s) = β exp(−α−s) + (1 − β) exp(−a+s), (32)

in which

α± =
µ0 + µ1

2
± 1

2

√

(µ1 − µ0)2 − 4η1, (33)
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and β =
µ1 − α−

α+ − α−

. (34)

By virtue of the expression of the normalized intensity
correlation function Eq. (32), the effects of the self-
correlation time and the cross-correlation time on C(s)
are discussed in Figs. 1−3. The solid line is the result of
the projection operator method, the open circles is the
result of numerical simulations from Eqs. (2) to (6).

Figure 1 shows the C(s) as a function of the cross-
correlation time τ0 for different values of a0. It is known
that C(s) is a measure of correlation between laser in-
tensity fluctuation at time t and that of t + s. We find
that C(s) increases with the increase of τ0 if a0 > 0. In
other words, the decay rate of the intensity fluctuation
becomes slower and slower with the increase of the cross-
correlation time τ0. In the case of a0 > 0, we also find

Fig. 1. C(s) as a function of τ0 for different values of a0;
Q = 3, D = 2, τ1 = 3.5, τ2 = 3.5, K = 1, A = 3, λ = 0.8.

Fig. 2. C(s) as a function of τ1 for different values of a0;
Q = 3, D = 2, τ0 = 3.5, τ2 = 3.5, K = 1, A = 3, λ = 0.1.

Fig. 3. C(s) as a function of τ2 for different values of a0;
Q = 3, D = 2, τ0 = 3.5, τ1 = 3.5, K = 1, A = 3, λ = 0.25.

that at larger value of τ0, there is almost no change for
C(s) when τ0 changes. However, the decay rate of the
intensity fluctuation becomes faster and faster with the
increase of τ0 when a0 < 0.

In order to show the effects of the self-correlation time
τ1 of the additive noise on the statistical properties of
single-mode laser, C(s) versus τ1 with different values of
a0 are plotted in Fig. 2. A minimum and a maximum
C(s) appear with the increase of τ1 when a0 > 0; But
if a0 < 0, C(s) decreases with the increase of τ1. This
means that the decay rate of the intensity fluctuation
become faster and faster with the increase of τ1 in the
case of a0 < 0.

Figure 3 shows the C(s) as a function of the self-
correlation time τ2 of the multiplicative noise for different
values of a0. It is shown that C(s) increases with the in-
crease of τ2 if a0 > 0. We can find that at larger value of
τ2, there is almost no change for C(s) when τ2 changes as
a0 > 0. When a0 < 0, C(s) decreases with the increase
of τ2. It is obvious that the effect of τ2 is similar with
the effect of τ0. From Figs. 1 − 3, we can see that the
larger the a0 is, the larger the C(s) becomes, whenever
a0 > 0 or a0 < 0. From Figs. 1 − 3, we can also find
that the results of the projection operator method are in
agree with the results of numerical simulations.

In conclusion, the effects of the cross-correlation time
τ0 and the self-correlation time τ1 and τ2 on the statisti-
cal properties of single-mode laser are investigated. It is
found that when a0 > 0, the normalized intensity corre-
lation function C(s) increases with the increase of τ0 and
τ2; when a0 < 0, C(s) decreases with the increase of τ0,
τ1, and τ2. With increasing the self-correlation time τ1,
a minimum and a maximum will appear on the curve of
C(s) as a0 > 0.
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